统计学中的P值怎样计算
P值的计算公式是
=2[1-Φ(z0)] 当被测假设H1为 p不等于p0时;
=1-Φ(z0) 当被测假设H1为 p大于p0时;
=Φ(z0) 当被测假设H1为 p小于p0时;
总之,P值越小,表明结果越显著但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要根据P值的大小和实际问题来解决。
扩展资料
统计学中回归分析的主要内容为:
1、从一组数据出发,确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。
2、对这些关系式的可信程度进行检验。
3、在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些)自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著的自变量加入模型中,而剔除影响不显著的变量,通常用逐步回归、向前回归和向后回归等方法。
4、利用所求的关系式对某一生产过程进行预测或控制。回归分析的应用是非常广泛的,统计软件包使各种回归方法计算十分方便。
参考资料来源:百度百科—P值
用t检验怎么算数据的p值?
t=(样本平均值-总体平均值)/[标准差/√n]~t(n-1)
求出t值后,查t值表,就可得到p值。
统计中t检验法中P值该怎样计算
统计学中,P值是用来判定假设检验结果的一个参数。
如果P值很小,说明原假设情况的发生的概率很小,且P值越小,表明结果越显著。
为理解P值的计算过程,用Z表示检验的统计量,ZC表示根据样本数据计算得到的检验统计量值。
左侧检验 H0:μ≥μ0 vs H1:μ<μ0
P值是当μ=μ0时,检验统计量小于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值 = P(ZC≤Z|μ=μ0)
右侧检验 H0:μ≤μ0 vs H1:μ>μ0
P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值 = P(ZC≥Z|μ=μ0)
双侧检验 H0:μ=μ0 vs H1:μ≠μ0
P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值 = 2P(ZC≥|Z||μ=μ0)
扩展资料:
t检验主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。
单总体t检验是检验一个样本平均数与一个已知的总体平均数的差异是否显著。当总体分布是正态分布,如总体标准差未知且样本容量小于30,那么样本平均数与总体平均数的离差统计量呈t分布。
双总体t检验又分为两种情况,一是独立样本t检验(各实验处理组之间毫无相关存在,即为独立样本),该检验用于检验两组非相关样本被试所获得的数据的差异性;一是配对样本t检验,用于检验匹配而成的两组被试获得的数据或同组被试在不同条件下所获得的数据的差异性,这两种情况组成的样本即为相关样本。
参考资料来源:百度百科--t检验